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Abstract
Nonlinear optical susceptibilities and nonresonant Raman scattering spectra of
the ferroelectric phase of lithium niobate (LiNbO3) are computed using a first-
principles approach based on density functional theory and taking advantage
of a recent implementation based on the nonlinear response formalism and the
2n+1 theorem. Infrared reflectivity spectra of the ferroelectric phase of LiNbO3

are also calculated. New assignments are proposed for the E-modes, clarifying
a longstanding debate in the literature. In addition, it is shown that knowledge
of the nonlinear optical susceptibility tensor of LiNbO3 does not significantly
alter the profile of its Raman spectra in a configuration where the longitudinal
optic modes are involved.

1. Introduction

Lithium niobate (LiNbO3) belongs to the class of ferroelectric oxides. It is nowadays
widely used due to its promising applications in various nonlinear optical and electro-optic
devices [1–4]. However, to improve the performances of such devices, a better understanding
of the microscopic physical properties of LiNbO3, like its optic phonon modes, is required.

LiNbO3 is a uniaxial crystal belonging to the trigonal system. Above 1480 K it is
paraelectric and belongs to the rhombohedral space group R3̄c. At 1480 K it undergoes
a structural phase transition, and below that temperature it crystallizes in a ferroelectric
rhombohedral structure of space group R3c. These two rhombohedral phases have 10 atoms
and two formula units per primitive unit cell [5].

Raman spectroscopy is one of the experimental techniques that has been widely used for
studying the phonon dynamics and the phase transition of LiNbO3. However, in spite of the
numerous experimental investigations during the last decade on its ferroelectric phase, the
assignment of phonon modes of E symmetry is not yet unambiguously established in the
literature and some controversies remain between the authors due to the presence of both
intrinsic and extrinsic defects in LiNbO3 crystals [6, 7]. In addition, even the previous first-
principles calculations do not manage to clarify these controversies because only the frequency

0953-8984/07/456202+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/45/456202
http://stacks.iop.org/JPhysCM/19/456202


J. Phys.: Condens. Matter 19 (2007) 456202 P Hermet et al

positions of the calculated Raman lines are considered to assign the experimental spectra, the
intensities of the Raman lines not being reported in previous works [8, 9].

In this paper we calculate, for several configurations, the Raman spectra of the ferroelectric
phase of LiNbO3 including both the frequency position and the intensity of Raman lines.
For this purpose, we use density functional theory (DFT), taking advantage of a recent
implementation based on the nonlinear response formalism and the 2n+1 theorem [10, 11]. The
computation of the intensity of the Raman lines has been performed not only for the transverse
optical (TO) modes, but also for the longitudinal optical (LO) modes. Infrared reflectivity
spectra of the ferroelectric phase of LiNbO3 are also calculated. These calculations allow
unambiguous assignment of all the experimental Raman lines to specific phonon modes, and
succeed in clarifying the longstanding debate in the literature relating to the assignment of the
E-modes.

This paper is organized as follows. Sections 2 and 3, respectively, describe the
theoretical formalism and the computational parameters used to compute the nonlinear optical
susceptibility tensors and the nonresonant Raman spectra of LiNbO3. In section 4, we
present our computational results. We report the nonlinear optical susceptibility tensors of
the ferroelectric phase of LiNbO3, a quantity required to compute the intensity of the LO
Raman lines. Then, we show that the Raman spectra of the R3c phase of LiNbO3, obtained
from first principles, are sufficiently accurate to be compared to the experimental ones and
are relevant for the assignment of the experimental lines. In particular, a new assignment of the
Raman lines of E symmetry, based on the analysis of the Raman intensities and mode oscillator
strengths, is proposed. Calculated infrared reflectivity spectra of LiNbO3 are also reported. In
addition, a discussion about the influence of the nonlinear optical susceptibility coefficients on
the calculation of the Raman intensity of the LO lines is also given in this section. Finally, our
results are summarized in section 5.

2. Theoretical section

2.1. Nonlinear optical susceptibility tensor

In an insulator the polarization, P , can be expressed as a Taylor expansion of the macroscopic
electric field, E , according to

Pi = Ps
i +

∑

j

χ
(1)
i j E j +

∑

j,l

χ
(2)
i jl E jEl + · · · , (1)

where indices i, j, l denote the Cartesian components, P s is the zero-field (spontaneous)
polarization vector, χ̃ (1) is the linear dielectric susceptibility (second-rank tensor) and χ̃ (2)

is the second-order nonlinear optical susceptibility (third-rank tensor). In the literature on
nonlinear optics, instead of using the χ̃ (2)-tensor, one often prefers to use the d̃-tensor defined
as: d̃ = 1

2 χ̃ (2).
Experimentally, the optical linear and nonlinear susceptibilities correspond to

measurements for electric fields at frequencies high enough to get rid of the ionic relaxation
but low enough to avoid electronic excitations. In the case of the second-order susceptibilities,
this constraint implies that both the frequency of E and of its second harmonic are lower than
the fundamental absorption gap.

At the theoretical level, the optical linear and nonlinear susceptibilities are assimilated
into the electronic response of the system that should a priori depend on the frequencies of
the optical electric fields [12]. In the present context of the 2n + 1 theorem applied within
the local density approximation to (static) DFT, we neglect the dispersion of χ̃ (2), computing
the electronic response at zero frequency. As a consequence, the χ

(2)
i jl tensor elements satisfy

2



J. Phys.: Condens. Matter 19 (2007) 456202 P Hermet et al

the Kleinman symmetry condition [13] and are therefore symmetric under a permutation of
indices i , j and l. Following the works of Dal Corso and co-workers [14, 15], we can relate
the nonlinear optical susceptibilities to a third-order derivative of a field-dependent energy
functional F = E − �0E · P , where �0 and E are, respectively, the unit cell volume and
the total energy in zero field. Practical details concerning how χ̃ (2) can be computed by a linear
response taking advantage of the 2n + 1 theorem are reported in [10].

2.2. Nonresonant Raman scattering

The nonresonant Raman scattering efficiency in a given direction, with a frequency between
ωd and ωd + dωd , and within a solid angle d�, is given for a Stokes process by [16]:

d2S

d� dωd
= ω4

d

16π2c4
[B(ω) + 1]h̄

∑

i, j,k,l

vivk Ii jkl(ω)w jwl, (2)

where ω = ω0 − ωd and

Ii jkl(ω) =
∑

m

a�
i j(m)akl(m)

1

2ωm
[δ(ω − ωm) − δ(ω + ωm)]. (3)

In these equations, indices i, j, k, l denote the Cartesian components, the asterisk symbolizes
the complex conjugation, c is the speed of light in the medium, h̄ is the reduced Planck constant,
ω0 (resp. ωd ) is the frequency of incident (resp. scattered) light, v (resp. w) is the polarization
unit vector of the incident (resp. scattered) light, B(ω) is the Bose factor and ωm is the
frequency of the mth zone-center phonon mode. The Raman susceptibility tensor is defined
as

ai j(m) = √
�0

∑

κ,γ

πκ
i j,γ um(κγ ), (4)

where the sum runs over all atoms κ and space directions γ , um(κγ ) is the (κγ )-component of
the mth phonon eigendisplacement vector and π̃ is a third-rank tensor describing the changes
of the linear dielectric susceptibility induced by an individual atomic displacement defined as

πκ
i j,γ = ∂χ

(1)
i j

∂τκγ

∣∣∣∣
0

, (5)

where τκγ corresponds to the displacement of the κ th atom in the direction γ .
The dynamical matrix, yielding the phonon frequencies and eigendisplacements, was

obtained within a variational approach to density functional perturbation theory [17].
For TO phonons (E = 0), π̃ can be computed as a mixed third-order derivative of the

energy functional, F , with respect to an electric field, twice, and to an atomic displacement
under the condition of zero electric field:

πκ
i j,γ |E=0 = − 6

�0
F τκγ EiE j . (6)

Table 1 reports the independent elements of the π̃ -tensor for the TO modes related to the
asymmetric unit of the R3c phase of LiNbO3. Knowledge of these can be relevant for
computing the electro-optic coefficients of LiNbO3 or for further theoretical Raman studies
of this material using for instance the bond polarizability model [18]. π̃ -tensors for the other
atoms can be obtained from those given in table 1 applying the symmetry operations expected
by the R3c space group.

For the case of LO phonons (D = 0) with wavevector q → 0 in a polar crystal, equation (4)
must additionally take into account the effect of the macroscopic electric field generated by the

3
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Table 1. πκ
i j,γ tensor elements of the TO modes (×10−3 Bohr−1) related to the asymmetric unit of

the R3c phase of LiNbO3.

γ

κ x y z

Li

(−4.1 −6.9 7.5
−6.9 4.1 −11.2
7.5 −11.2 0.0

) (−6.9 4.1 11.2
4.1 6.9 7.5
11.2 7.5 0.0

) ( 2.6 0.0 0.0
0.0 2.6 0.0
0.0 0.0 0.1

)

Nb

( 22.9 −19.8 −86.3
−19.8 −22.9 −36.0
−86.3 −36.0 0.0

) (−19.8 −22.9 36.0
−22.9 19.8 −86.3
36.0 −86.3 0.0

) (−86.1 0.0 0.0
0.0 −86.1 0.0
0.0 0.0 −191.6

)

O

(−58.3 −7.6 41.2
−7.6 −22.4 8.0
41.2 8.0 −62.8

) ( 9.8 −5.4 4.3
−5.4 26.1 11.3
4.3 11.3 18.2

) ( 37.4 10.8 −37.3
10.8 18.3 1.1

−37.3 1.1 63.8

)

lattice polar vibration. This field enters in the computation of the Raman susceptibilities at
two levels. On one hand it gives rise to the non-analytical part of the dynamical matrix that
modifies the frequencies and eigenvectors with respect to pure TO phonons. On the other hand,
the electric field induces an additional change in the dielectric susceptibility tensor related to
the nonlinear optical coefficients χ

(2)
i jk . Thus, for LO phonons, equation (6) has to be modified

as follows [19]:

πκ
i j,γ |D=0 = πκ

i j,γ |E=0 − 8π

�0

∑
l Z∗

γ l(κ)ql∑
l,l′ qlε

∞
ll′ ql′

∑

l

χ
(2)
i jl ql, (7)

where D is the electric displacement vector, Z̃∗(κ) is the Born effective charge tensor of the
κ th atom and ε̃∞ is the optical dielectric tensor. For Z̃∗ and ε̃∞ tensors, we used values from a
previous work [20]. Practical details concerning how the π̃ -tensors can be computed by linear
response are described in [10]. As we discuss further below, the accuracy in the calculation
of frequencies and π̃ -tensors will be respectively estimated from a direct comparison between
the experimental frequency positions and the intensities of the LiNbO3 Raman lines. For all
the calculated Raman spectra shown in this paper, the Raman line shape is assumed to be
Lorentzian and the linewidth is fixed at 4 cm−1.

3. Computational details

Our first-principles studies of the ferroelectric phase of LiNbO3 were performed in the
framework of DFT, as implemented in the ABINIT package [21]. Structural relaxation
was done until the maximum residual forces (stresses) were less than 10−5 Ha Bohr−1

(10−7 Ha Bohr−3). The relaxed parameters, given in [20], are in close agreement with previous
first-principles calculations and experimental data. The exchange–correlation energy functional
was evaluated within the local density approximation (LDA) as parametrized by Perdew and
Wang [22]. The all-electron potentials were replaced by norm-conserving pseudopotentials
generated according to the Troullier–Martins scheme [23] thanks to a package developed at the
Fritz-Haber Institute (Berlin) [24]. Niobium (4s, 4p, 4d, 5s), lithium (1s, 2s) as well as oxygen
(2s, 2p) electrons were considered as valence states in the construction of the pseudopotentials.
Convergence of the structure optimization and phonon calculation were reached for a 45 Ha
plane-wave kinetic energy cut-off and a 6×6×6 mesh of special k-points [25], whereas 35 Ha
and a 8 × 8 × 8 mesh were required to converge the d̃-tensor and π̃ -tensor elements.
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Table 2. Independent elements of the d̃-tensor (in pm V−1) of LiNbO3.

d31 d22 d33

Present −8.01 −1.23 −30.21
Exp. [26] −4.64 +2.46 −41.7
Exp. [19] −6.75 +3.6 −37.5

4. Results and discussions

4.1. Nonlinear optical susceptibility tensor

In this subsection, we give the nonlinear optical susceptibility tensor, d̃ , that will be used in
the following to compute the Raman intensities of the LO lines. In the ferroelectric phase of
LiNbO3, the d̃-tensor has four independent elements given by (in Voigt notation)

di j =
( 0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

)
. (8)

The Kleinman symmetry rule allows us to reduce this tensor to three independent elements,
since in this case we have d31 = d15. The elements of the d̃-tensor calculated in the ferroelectric
phase of LiNbO3 are given in table 2 and are compared to the experimental values1. We
observe a reasonable agreement between the theoretical and experimental values. Nevertheless,
although all calculated susceptibilities are found to be negative, a positive value has been
experimentally reported for d22. Nonlinear optical susceptibilities are particularly difficult
to measure accurately and the values reported by different authors are often in substantial
disagreement [27]. Thus, as the sign is unambiguously defined in our calculations, we suggest
that the positive sign of d22 reported experimentally might result from a wrong interpretation
of the experimental measurements.

4.2. Assignment of the Raman spectra

The zone-center optical phonon modes of the R3c phase of LiNbO3 can be classified, according
to its irreducible representations, into 4A1 ⊕ 5A2 ⊕ 9E. The A1-modes polarized along z and
the doubly degenerate E-modes polarized in the x–y plane are both Raman and infrared active
while the A2-modes are silent. If the orthogonal reference system (x , y, z) is chosen as such as
z is aligned along the polar axis of LiNbO3 ([111] pseudocubic direction) and x aligned along
the crystallographic a-axis, the Raman susceptibility tensors of the A1- and E-modes have a
well-defined form given, respectively, by [28]:

A1(z) =
( a 0 0

0 a 0
0 0 b

)
, (9)

E(x) =
( c 0 d

0 −c 0
d 0 0

)
, E(y) =

( 0 −c 0
−c 0 d
0 d 0

)
. (10)

4.2.1. A-modes. The computed frequencies of the five A2-modes are 218, 297, 412, 454
and 892 cm−1. Those obtained for the A1(TO) and A1(LO) modes are given in table 3.

1 Contrary to what is usually achieved within LDA, a very good agreement was also reported between the experimental
and theoretical linear optical susceptibilities [20] that can be explained by the unusually small LDA error on the
electronic band gap.
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Figure 1. Calculated infrared reflectivity spectra of LiNbO3 for the A1-modes (A) and E-modes
(B) in the 0–1000 cm−1 range.

Table 3. Overlap matrix between the eigenvectors of the A1(LO) and A1(TO) modes of LiNbO3.
Values in parentheses are the frequencies (in cm−1) of the different A1-modes whereas the values
in square brackets are the mode effective charges of the A1(TO)-modes.

TO1 TO2 TO3 TO4
[6.946] [0.526] [1.131] [6.577]
(243) (288) (355) (617)

LO1 (287) 0.156 0.995 0.015 −0.013
LO2 (348) 0.365 −0.073 0.932 −0.092
LO3 (413) 0.811 −0.127 −0.372 −0.450
LO4 (855) 0.446 −0.057 −0.091 0.897

Calculated frequencies for both A1- and A2-modes are close to those reported experimentally
and theoretically in the literature [7, 29–33]. Table 3 also reports the mode effective charges
given by [17]

Z∗
m,α =

(
∑

κ,β

Z∗
αβ(κ)um(κβ)

)/⎛

⎝
√∑

κ,β

u2
m(κβ)

⎞

⎠ , (11)

and the overlap matrix between the eigenvectors of the A1(LO) and A1(TO) modes defined as

〈uLO
m |M̃|uTO

n 〉 =
∑

β,κ

uLO
m (κβ)MκuTO

n (κβ), (12)

where Mκ is the mass of the κ th atom, and uLO and uTO are, respectively, the eigendisplacement
vectors of the A1(LO) and A1(TO) modes. Indeed, due to the long-range Coulomb interaction,
the eigenvectors of the TO modes do not necessarily correspond to those of the LO modes.

Panel A of figure 1 displays the calculated infrared reflectivity spectrum (without damping)
at normal incidence of the A1-modes. This spectrum was obtained as described in [17]. A good
agreement between theory and experiment [29] is observed both for frequency and minima
positions. Although figure 1 suggests that the three lowest modes exhibit a similar LO/TO
splitting, the inspection of table 3 shows that the TO1 and TO4 modes exhibit a giant LO/TO

6
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Figure 2. Experimental [33] (A) and calculated (B) Raman spectra of LiNbO3 for a x(zz)y
scattering configuration in the 0–1000 cm−1 range. Inset: zoom of the calculated spectrum in
the 345–365 cm−1 range. The spectra show the A1(TO) modes.

splitting according to their large mode effective charges, while that of the TO2 and TO3 modes
is much less affected by the electric field. Thus, the TO1, TO2, TO3 and TO4 modes can be,
respectively, associated to the LO3, LO1, LO2 and LO4 modes.

Figure 2 compares the calculated Raman spectrum of LiNbO3 and the experimental one
obtained for a x(zz)y scattering configuration. In such a configuration, the incoming photon
has its wavevector along x and its polarization along z while the scattered photon has its
wavevector along y and its polarization along z. Thus, only pure A1(TO) modes can be detected
in this configuration. We observe a qualitative good agreement between the calculated and
experimental spectra. Indeed, the TO1 and TO4 modes are correctly predicted both in position
and relative intensity, and have the strongest scattering efficiency. The TO2 mode appears
weaker on the calculated spectrum than on the experimental one. However, this effect is not
related to the intrinsic scattering efficiency of the TO2 mode. It is rather a consequence of
the fact that the TO1 line in the experimental spectrum is quite broad and that it overlaps with
the TO2 line, whereas this is not the case for the calculated spectrum since we use a constant
linewidth to represent the Raman lines. Finally, the scattering efficiency of the calculated TO3
mode is weaker than that of the other modes in agreement with the experiment, although the
calculated efficiency is so small that this line does not appear distinctly in panel B of figure 2.
Thus, the four Raman A1(TO) modes are unambiguously assigned by our calculations and are
in agreement with the assignments reported in the literature.

4.2.2. E-modes. Frequencies of the calculated E(TO) and E(LO) modes are reported in
table 4. The overlap matrix between the eigenvectors of the E(TO) and E(LO) modes, also
reported in table 4, shows that the mixing between the LO and TO modes is important for all
E(TO) modes except for the TO6 and TO9 modes for which this mixing is weak. These two
latter E(TO) modes can therefore be associated to the LO5 and LO8 modes, respectively.

7
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Figure 3. Experimental [6] (A) and calculated (B) Raman spectra of LiNbO3 for a x(yz)y scattering
configuration in the 0–1000 cm−1 range. The spectra show the E(TO) and E(LO) modes.

Table 4. Overlap matrix between the eigenvectors of the E(LO) and E(TO) modes of LiNbO3.
Values in parentheses are the frequencies (in cm−1) of the different E-modes, whereas the values in
square brackets are the mode effective charges of the E(TO) modes.

TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8 TO9
[4.620] [1.467] [3.610] [2.652] [2.341] [0.474] [0.942] [6.507] [1.105]
(155) (218) (264) (330) (372) (384) (428) (585) (677)

LO1 (197) 0.795 0.480 0.338 0.098 0.097 0.002 0.014 0.063 0.008
LO2 (224) 0.316 0.849 0.407 0.082 0.077 0.002 0.011 0.046 0.005
LO3 (298) 0.302 0.159 0.736 0.484 0.301 0.006 0.035 0.125 0.014
LO4 (349) 0.135 0.059 0.192 0.779 0.568 0.010 0.039 0.103 0.011
LO5 (384) 0.002 0.001 0.002 0.004 0.024 1.000 0.001 0.002 0.000
LO6 (423) 0.092 0.036 0.102 0.129 0.328 0.010 0.911 0.160 0.015
LO7 (452) 0.229 0.088 0.243 0.279 0.597 0.017 0.402 0.532 0.046
LO8 (675) 0.031 0.011 0.028 0.024 0.038 0.001 0.009 0.175 0.983
LO9 (863) 0.311 0.108 0.268 0.219 0.325 0.008 0.072 0.793 0.179

Figure 3 compares the calculated and the experimental Raman spectrum of LiNbO3

obtained for a x(yz)y scattering configuration. In this configuration, only the E(TO) and E(LO)
modes can be detected. As in case of the A1-modes, a qualitative good agreement between
the calculation and the experiment is observed both in the frequency position and the relative
intensity of the Raman lines. However, in spite of this good agreement, the assignment of the
nine Raman E(TO) modes remains difficult because many different experimental frequencies,
with different assignments, have been reported in the literature (see table 5). This comes from
the fact that the properties of LiNbO3 crystals strongly depend on the internal and external
defects [34], these small modifications in the structure and to the stoichiometry of the material
being particularly sensitive in Raman spectroscopy. Nevertheless, most authors seem to agree
on seven E(TO) modes centered around 152, 237, 265, 322, 368, 431 and 580 cm−1. For the

8
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Table 5. Frequencies (cm−1) of the E(TO) modes in the R3c phase of LiNbO3.

Experimental

Calculated Raman Infrared

Present [8] [9] [6] [30] [7] [31] [29] [32] [29] [35] [36]

92
TO1 155 151 157 153 155 152 155 152 152a 152 155 147

167 177 180
TO2 218 236 214 238 238 238 238 238 236 236 238 234
TO3 264 269 264 265 262 265 264 263 265 265 258
TO4 330 307 349 322 325 322 325 321 322 322 324 317
TO5 372 334 419 363 361 354
TO6 384 352 423 369 371 368 371 367 370
TO7 428 432 446 432 431 436 431 434 431 431 431 421

530 537
TO8 585 526 605 580 582 582 582 579 578 586 582

617 610 610 630
TO9 677 690 668 670b 668 657

743
840

a These authors suggest that there are two different modes at 152 cm−1.
b Combination bands.

two missing Raman modes, different frequencies have been suggested both experimentally and
theoretically. Experimentally, Ridah et al [6] and Repelin et al [30] suggest frequencies at
180 and 610 cm−1 which have been assigned by Barker et al [29] as mixed phonons that have
their wavevector at 45◦ from the z-axis, Kaminow et al [7] report modes at 92 and 630 cm−1,
Claus et al [31] mention phonons at 668, also observed by infrared spectroscopy [29, 35, 36],
and 743 cm−1 and Yang et al [32] report modes at 152 and 530 cm−1 and suggest that the
frequencies at 743 and around 670 cm−1 are due to combination bands. Using first-principles
calculations, Parlinski et al [9] found the seven modes reported by most authors as well as
phonons at 423 and 690 cm−1, while Caciuc et al [8] suggest the existence of phonons at 167
and 617 cm−1 as proposed by Ridah et al [6] and Repelin et al [30] (see table 5).

Inspection of table 5 shows that our calculation reproduces the seven modes mentioned
above. For the two remaining modes, we suggest that (i) one of them has a frequency of about
670 cm−1 in agreement with [9, 29, 31, 35, 36] and (ii) the TO5 and TO6 modes are not the
same experimental Raman mode but are two different E(TO) modes, the first mode only being
visible by infrared spectroscopy and the second only being visible by Raman spectroscopy.

Panel B of figure 1 displays the calculated infrared reflectivity spectrum (without damping)
at normal incidence of the E-modes. A good agreement between theory and experiment [29]
is observed both for frequency and minima positions. In particular, the TO9 mode centered at
677 cm−1, assigned experimentally by Barker et al [29] and Yang et al [32] to a combination
band, is clearly observed in both our calculated infrared and Raman spectra, giving support
to the idea that this mode does not result from a second-order process but from a first-order
process. In addition, the TO9 mode is strongly damped because its reflection peak, calculated
without damping, is more intense than the experimental [29] one, suggesting that this phonon
mode can sometimes not be detected by Raman spectroscopy and has a broad and weak Raman
line in the case where it is detected (see figure 3). Thus, the experimental Raman line around
670 cm−1, which we assign to the calculated TO9 line, is the first missing E(TO) mode.

9
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Table 6. Infrared (IR) mode oscillator strengths (×10−4 au) (see footnote 2) and reduced Raman
(Ra) scattering efficiencies of the E(TO) modes in LiNbO3. Calculated and experimental reduced
Raman efficiencies have been determined from the x(zy)z configuration in which only the E(TO)
modes are detected.

Theory Experiment

IR Ra IR [29] Ra [6]
Mode Sm I/ITO1 Sm I/ITO1

TO1 5.89 1.00 6.02 1.00
TO2 0.55 0.82 0.53 0.97
TO3 4.38 0.12 4.58 0.21
TO4 2.72 0.28 2.70 0.30
TO5 3.60 0.03 3.59
TO6 0.15 0.19 0.19
TO7 0.31 0.11 0.40 0.10
TO8 14.33 0.48 13.43 0.37
TO9 0.37 0.01 1.06 0.12

Calculated and experimental infrared mode oscillator strengths2 of the E(TO) modes
are reported in table 6 with their Raman scattering efficiencies and are relevant to clarify
the longstanding debate in the experimental assignment of the last missing E(TO) mode.
Because it is very difficult to determine accurately the absolute Raman scattering efficiencies
experimentally, we have therefore reported the intensities of the Raman lines relative to the
TO1 line intensity. The TO5 mode has an oscillator strength of 3.60 × 10−4 au, in very good
agreement with the experiment, and a weak Raman scattering efficiency. Due to its significant
mode oscillator strength, this mode is easily detected by infrared spectroscopy and it gives
rise to a measurable LO–TO splitting (see figure 1). In contrast, this mode is difficult to
detect by Raman spectroscopy. The TO6 mode has a weak oscillator strength and a significant
Raman scattering efficiency, giving rise to the well-defined Raman line centered at 384 cm−1

in figure 3. In contrast, due to its weak mode oscillator strength, this mode is difficult to detect
by infrared spectroscopy and it does not give rise to a notable LO–TO splitting (see figure 1).
Thus, the distinct characteristics of the TO5 and TO6 modes give a first argument in favor of
our assumption that there are two E(TO) modes around 370 cm−1.

An additional argument in favor of our assumption comes from an experiment of Claus and
co-workers [31]. These authors used Raman spectroscopy to measure the dependence of the
phonon frequencies on the angle between the phonon wavevector, q, and the z-axis of LiNbO3.
They observed only one mode around 370 cm−1 with no angular dependence of the frequency,
indicating that this mode has a negligible infrared oscillator strength. The characteristics of
the mode measured by Claus et al are therefore compatible with the characteristics of the TO6
mode. These observations cannot be explained if we assume only one mode at this frequency
because the oscillator strength of the TO5 mode (3.60 × 10−4 au) is not compatible with the
absence of angular dispersion of the phonon frequency.

4.3. Influence of the d̃-tensor elements on the profile of the Raman spectra of LO modes

As discussed in section 2.2, knowledge of the d̃-tensor elements is a priori required to compute
the intensity of the LO Raman lines in polar crystals (see equation (7)). However, calculations
or measurements of the d̃-tensor elements are not always easy or possible. It is therefore useful

2 The mode oscillator strength Sm of the mode m is given by [17]: Sm = ∑
α |∑κ,β Z∗

αβ(κ)um(κβ)|2.
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Figure 4. Influence on the Raman intensity of the LO lines of LiNbO3 taking into account (dashed
lines) or not (continuous lines) the d̃-tensor elements for a z(yy)z̄ (A) and x(zx)y (B) scattering
configurations. In the first configuration the A1(LO) and E(TO) modes are detected whereas the
E(LO) and E(TO) are detected in the second one.

to investigate how the second term in the right-hand side of equation (7) affects the intensity
of LO lines in the Raman spectrum of LiNbO3. From equations (4) and (7), the profile of the
Raman spectrum of LiNbO3, in a configuration where the LO modes can be detected, should be
significantly affected if the d̃-tensor elements and/or the mode effective charges are high (ε∞

xx
and ε∞

zz being very close [20]).
The Raman intensity of the LO lines of the R3c phase of LiNbO3 can only be affected

by the d22 and d31 independent elements of the d̃-tensor. Indeed, although the d33 term has the
highest value (−30.21 pm V−1), this term, involved from equations (9) and (10) in the detection
of the A1 modes, cannot affect the Raman intensity of the A1(LO) modes due to the transverse
polarization of the light. Thus, there is no configuration restricting pure A1(LO) modes in
LiNbO3 monocrystals with Raman spectroscopy.

Figure 4 compares the calculated Raman spectrum of LiNbO3 for a z(yy)z̄ (panel A) and
x(zx)y (panel B) scattering configurations taking (or not taking) into account the correction to
the second term in the right-hand side of equation (7). In the first configuration, the A1(LO)

and E(TO) modes are detected and the Raman intensity of the A1(LO) modes are affected by
the d22 and d31 terms. In the second configuration, the E(LO) and E(TO) modes are detected
and the Raman intensity of the E(LO) modes are affected only by the d31 term. We observe
that the Raman intensity of the LO lines is not altered except for the A1(LO3), A1(LO4) and
E(LO9) lines, centered respectively at 413, 855 and 863 cm−1, which are less intense taking
into account the second term correction in the right-hand side of equation (7). This is because
these LO modes have an overlap of 0.811, 0.897 and 0.793, respectively, with the A1(TO1),
A1(TO4) and E(TO8) modes, which also have the higher mode effective charge (see tables 3
and 4). No significant modification in the Raman intensity of the LO modes of LiNbO3 has
been pointed out in other scattering configurations. Thus, knowledge of the d̃-tensor has only
a minor effect on the profile of the Raman spectra of LiNbO3 in a configuration where the LO
modes are detected.

11
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5. Conclusions

In this paper we have calculated, for the first time, the derivative of the linear optical
susceptibility with respect to atomic displacement and the second-order nonlinear optical
susceptibility tensors of the ferroelectric phase of LiNbO3. These two quantities are found
to be in good agreement with the experimental data, leading to an accurate calculation of
the nonresonant Raman spectra of LiNbO3 for different experimental configurations. Infrared
reflectivity spectra of the ferroelectric phase of LiNbO3 have been also calculated.

Then, we showed that the calculation of the infrared and Raman intensities of the
ferroelectric phase of LiNbO3 from first-principles is particularly relevant for clarifying the
different controversies in the assignment of the E(TO) modes. Indeed, our calculation
reproduces seven of nine experimental E(TO) modes centered around 152, 237, 265, 322,
368, 431 and 580 cm−1 in agreement with most authors. For the two remaining modes, we
have shown that (i) one of them has a frequency of about 670 cm−1 wrongly assigned to
a combination band in literature and (ii) the comparison of the calculated Raman scattering
efficiencies and infrared mode oscillator strengths with the corresponding experimental values
leads to the identification of two E(TO) modes around 370 cm−1. This latter prediction has
never been demonstrated in the previous studies, which assign only one E(TO) mode around
this frequency. In addition, we have shown that the nonlinear optical susceptibility coefficients
have a minor effect on the profile of the Raman spectra of LiNbO3 in a configuration where the
E(LO) modes are detected.

Finally, DFT, taking advantage of a recent implementation based on the nonlinear response
formalism and the 2n+1 theorem, appears as an efficient tool to calculate the Raman spectra of
ferroelectric materials, and thus make reasonable predictions on the assignment of their phonon
lines.
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